Mitsuru Oka [a]*, Kunihisa Baba [a], Kensuke Nakamura [b] ${ }^{\dagger}$, Lulu Dong [c], Hitoshi Hamajima [a], Ryoichi Unno [a] and Yukiharu Matsumoto [a]

[a] Central Research Laboratory, Sanwa Kagaku Kenkyusho, Co., Ltd., 363 Shiosaki, Hokusei-cho, Inabe-gun, Mie 511-0406, Japan
[b] Institute of Medicinal Molecular Design, 5-24-5 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
[c] Chemistry Department of Harbin Medical University, Harbin, Heilongjiang 150086, China Received September 13, 2002

Abstract

5-Cyano-1-azabicyclo[3.3.0]octane (1) was prepared in one step from 1,7-dichloro-4-heptanone (4) under mild conditions. The application of this method for the preparation of 5-cyano-4,6-dimethyl-1-azabicyclo[3.3.0]octane (11) gave two diastereomers in equilibrium. The NMR measurements of $\mathbf{1 1}$ and its reduced compound 15 showed that the major isomer is the cis-exo form, and the minor isomer is the trans form. Molecular orbital calculations indicated that the cis-exo form is more stable than the trans form, in agreement with the experimental results. Furthermore, 6-cyano-1-azabicyclo[4.3.0]nonane (17) and 1-azabicyclo[4.4.0]decane (19), both including a six-membered ring, were prepared from appropriate haloketones by using this double cyclization method.

J. Heterocyclic Chem., 40, 177 (2003).

Introduction.
1-Aazabicyclo[3.3.0]octane is a useful amine moiety for producing biologically active substances, for example, antiarrhythmic agents, cerebral function activators, and muscarinic M_{1} receptor agonists (Figure 1) [1]. 5-Cyano-1-azabicyclo[3.3.0]octane (1) is a useful intermediate for introducing a 1 -azabicyclo[3.3.0]octane ring through a conversion of a cyano group to various functional groups [2]. However, the known preparation methods for 1 require many steps, as well as the handling of an unstable intermediate [3,4]. In this paper, we describe a novel preparation method for $\mathbf{1}$ that avoids these disadvantages [5]. We discuss the stereochemistry involved in the formation of this ring with methyl groups. We also describe the formation of 1 -azabicyclic compounds containing a six-membered ring.

1-Azabicyclo[3.3.0]octane

Cerebral function activator

Antiarrhythmic agent

Muscarinic M_{1} receptor agonist

Figure 1. Biologically active substances with 1-azabicylco[3.3.0]octane.
Results and Discussion.
The retrosynthesis of $\mathbf{1}$ is shown in Scheme 1. Compound 1 might be synthesized by double cyclization of 2-amino-5-chloro-2-(3-chloropropyl)pentanenitrile (2),

Scheme 1

1

which is an intermediate of the Strecker reaction [6] of 1,7-dichloro-4-heptanone (4) [7] via imine 3. Alternatively, double cyclization of $\mathbf{3}$ can lead to 1 -azoniabicyclo-[3.3.0]oct-1(5)-ene chloride (5); the known perchlorate 6 [3a] can be transformed to $\mathbf{1}$ via addition of cyanide ion. When we first stirred 4 in MeOH with acetone cyanohydrine ($\mathbf{8}$) and ammonia, we obtained a mixture of $\mathbf{1}$ and 2-(3-chloropropyl)tetrahydrofuran-2-carbonitrile (7) (Table 1, entry 1). Compound 7 was formed by transcyanation of 4 prior to imine formation, and subsequent cyclization. When we replaced $\mathbf{8}$ by the more stable 2-amino-2-methylpropanenitrile (9) [8] as a cyanide source, we obtained $\mathbf{1}$ in 83% yield without the formation of 7 (Table 1, entry 2).

The reaction of $\mathbf{1 0}$ [9] with $\mathbf{9}$ and ammonia in a sealed tube at 50° gave $\mathbf{1 1}$ as a mixture of two diasteroisomers in 40% yield. The ${ }^{1} \mathrm{H}$ NMR spectrum analysis indicated that the major (cis) isomer had only one signal peak for the methyl hydrogens at $\delta 1.25 \mathrm{ppm}$, and the minor (trans) isomer had two signal peaks for the methyl hydrogens at δ

Table 1

1.14 ppm and $\delta 1.23 \mathrm{ppm}$. The observed cis/trans ratio was 79:21 (Scheme 2). Furthermore, the fact that the methine protons at the 4 - and 6-positions of $\mathbf{1 1}$ were replaced with deuterium at room temperature in deuterated methanol indicated that cis-11 and trans-11 are in a thermodynamic equilibrium via 12, 13, and 14 (Scheme 2). The ab initio MO calculations at MP2/6-31G* showed that cis-exo- $\mathbf{1 1}$ is $1.8 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than trans-11, a finding in accord with the experimental results (Figure 2). Meanwhile, cis-endo- $\mathbf{1 1}$ could not be formed because of the instability caused by the steric repulsion between the methyl groups; the relative energy difference between cis-exo- $\mathbf{1 1}$ and the hypothetical cis-endo- $\mathbf{1 1}$ was calculated as $6.7 \mathrm{kcal} \mathrm{mol}^{-1}$.

Scheme 2

Reagents and Conditions: (a) NH_{3} (excess), 9 (3 eq.), MeOH in sealed tube, 50°, overnight (40%).

Compound $\mathbf{1 1}$ was reduced to generate $\mathbf{1 5}$ using LiAlH_{4} without changing the ratio of the diastereoisomers. The mixture of diastereoisomers was converted to benzyl carbamates, separated by chromatography on alumina, and hydrogenated with $5 \% \mathrm{Pd}-\mathrm{C}$ to give each isomer of $\mathbf{1 5}$ (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum showed that the major isomer had one signal peak ($\delta 1.03 \mathrm{ppm}$) for the methyl hydrogens, and the protons of the $\mathrm{CH}_{2}-\mathrm{NH}_{2}$ methylene group are magnetically equivalent. The minor isomer

Figure 2. Optimized structures and energies (Hartree) of cis-exo- $\mathbf{1 1}$ and trans-11 at the MP2/6-31G* level. Numbers in parentheses are relative energies in $\mathrm{kcal} \mathrm{mol}^{-1}$.

Scheme 3

Reagents and Conditions: (a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$, reflux, 3 hours (78\%); (b) $\mathrm{CbzCl}, \mathrm{NaOH}$, dioxane $/ \mathrm{H}_{2} \mathrm{O}$, room temperature, overnight; (c) chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$; (d) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$, room temperature, overnight (cis-exo-15, 49%; trans-15, 8.9\%); (+) NOE correlations observed from NOESY spectra.
showed two signal peaks ($\delta 0.97 \mathrm{ppm}$ and $\delta 1.04 \mathrm{ppm}$) for the methyl hydrogens, and the methylene protons of the $\mathrm{CH}_{2}-\mathrm{NH}_{2}$ group are in this case nonequivalent. These results indicate that the major isomer is in the symmetric cis form, while the minor isomer is in the trans form. Furthermore, a NOE correlation from the NOESY spectrum of the cis isomer was observed between the signals at $\delta 2.52 \mathrm{ppm}$, corresponding to the $\mathrm{CH}_{2}-\mathrm{NH}_{2}$ methylene group, and at $\delta 1.03 \mathrm{ppm}$, corresponding to the methyl groups; this result indicated the cis-exo configuration. In the trans isomer, a NOE correlation was observed between the signals ($\delta 2.50 \mathrm{ppm}$ and $\delta 2.56 \mathrm{ppm}$) corresponding to the $\mathrm{CH}_{2}-\mathrm{NH}_{2}$ methylene group and the signal at $\delta 0.97$ ppm , corresponding to the exo-methyl group.

The reaction of $\mathbf{1 6}$ [10] at 20° for 24 hours with ammonia and 9 gave 6-cyano-1-azabicyclo[4.3.0]nonane (17) [11] in 57% yield (Scheme 4); the reaction of $\mathbf{1 8}$ [10] gave 6 -cyano-1-azabicyclo[4.4.0]decane (19) [11] in 21% yield.

In conclusion, we have developed a novel method for preparing 1 by double cyclization of 4 . The application of this method to the preparation of $\mathbf{1 1}$ gave two diastereoisomers

Scheme 4

Reagents and Conditions: (a) NH_{3} (excess), 9 (3 eq.), MeOH , room temperature, 24 hours ($\mathbf{1 7}, 57 \% ; \mathbf{1 9}, 21 \%$).
reflecting possible configurations of the methyl groups. The observed ratio of the isomers as determined by NMR measurements is consistent with the relative energies estimated by ab initio MO calculations. Furthermore, this reaction was applied to prepare six-five and six-six fused-ring systems in the case of compounds 17 and 19 . The conversion of the nitrile group to various functional groups allows the transformation of bicyclic amine moieties into various biologically active substances. The introduction of a cyanomethyl group [12], an ethoxycarbonylmethyl group [12], and a nitromethyl group [1b] to this ring has been reported by modifications of the presented method. Further applications of this method are expected.

EXPERIMENTAL

Infrared (IR) spectra were obtained on a JASCO FT/IR-8000 or a PERKIN ELMER FTIR 1600, and NMR spectra were obtained using a JEOL JNM-GSX270 spectrometer (270 MHz for ${ }^{1} \mathrm{H}$ and 68 MHz for ${ }^{13} \mathrm{C}$) or a JEOL JNM-ECP400 $(400 \mathrm{MHz}$ for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) using tetramethylsilane (TMS) as an internal standard. The mass spectra were obtained on a JEOL JMS-DX 300 spectrometer.

Computational Methods.

All of the ab initio MO calculations were carried out using the Gaussian98 software package [13]. Geometries were fully optimized at the MP2/6-31G* level.

5-Cyano-1-azabicyclo[3.3.0]octane (1).
To a solution of $\mathrm{NH}_{3}(27 \mathrm{~g}, 1.6 \mathrm{~mol})$ in $\mathrm{MeOH}(150 \mathrm{~g}), 4(30 \mathrm{~g}$, $0.16 \mathrm{~mol})$ and $9(41 \mathrm{~g}, 0.49 \mathrm{~mol})$ were added at 5°. The mixture was stirred at 20° for 24 hours, and concentrated. The residue was dissolved in 5 N aOH aqueous solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and distilled to give $\mathbf{1}(18 \mathrm{~g}, 81 \%)$ as a colorless oil, bp 91-94 ${ }^{\circ}$ $(4.4 \mathrm{mmHg})$ [Lit. [3a] 93-94 $\left.{ }^{\circ}(5 \mathrm{mmHg})\right] ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 1.76-2.10 (m, 6H, H3, H7, two protons of H4 and H6), 2.27-2.38 ($\mathrm{m}, 2 \mathrm{H}$, two protons of H 4 and H6), 2.53-2.63 and 3.07-3.25 (m, $4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 8) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.40$ (C3, C7), 38.45 (C4, C6), 55.33 (C2, C8), 67.09 (C5), 124.56 (CN); IR (neat): 2969 , $2870(\mathrm{C}-\mathrm{H}), 2232(\mathrm{CN}) \mathrm{cm}^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2}$ $\left(\mathrm{M}^{+}\right) 136.1000$, found 136.0982.
2-(3-Chloropropyl)tetrahydrofuran-2-carbonitrile (7).
To a solution of $\mathrm{NH}_{3}(0.60 \mathrm{~g}, 35 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL}), 4$ $(0.50 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $\mathbf{8}(2.3 \mathrm{~g}, 27 \mathrm{mmol})$ were added at 5°. The mixture was stirred at 20° for 24 hours, and concentrated. The
residue was dissolved in 1 N aqueous solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by chromatography on silica (n hexane/EtOAc) to give $7(39 \mathrm{mg}, 8.2 \%)$ as a colorless oil, ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.86-2.46\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H}^{\prime}, \mathrm{H} 1\right.$ '), 3.58-3.65 (m, 2H, H3'), $4.01(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 24.78 and 27.88 (C4, C2'), 35.88 and 37.52 ($\mathrm{C} 3, \mathrm{C}^{\prime}$), 44.22 (C3'), 68.83 (C5), 78.92 (C2), 120.46 (CN); IR (neat): 2963, $2882(\mathrm{C}-\mathrm{H}), 2232(\mathrm{CN}) \mathrm{cm}^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{ClNO}$ $\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}\right)$ 173.0607, found 173.0596 .
5-Cyano-4,6-dimethyl-1-azabicyclo[3.3.0]octane (11).
To a solution of $\mathbf{1 0}(1.0 \mathrm{~g}, 4.7 \mathrm{mmol})$ and $\mathbf{9}(1.2 \mathrm{~g}, 14 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL}), \mathrm{NH}_{3}(1.8 \mathrm{~g}, 0.11 \mathrm{~mol})$ was introduced at -50°. The mixture was stirred in a sealed tube at $50-60^{\circ}$ overnight. After cooling, the resulting mixture was poured into $\mathrm{Et}_{2} \mathrm{O}$, and a precipitate was filtered off. The filtrate was concentrated, and purified by chromatography on alumina (n-hexane/EtOAc 50:1) to give $\mathbf{1 1}(0.31 \mathrm{~g}, 40 \%$, the ratio of the isomers was $79: 21)$ as a colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major isomer $\delta 1.25(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{x} 2$), 1.84-2.13 (m, 6H, H3, H4, H6, H7), 2.47-2.56 and 3.21-3.28 (m, 4H, H2, H8); minor isomer $\delta 1.14(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.23\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.46-1.60$ and $1.88-$ $2.10(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 7$, one proton of H 4 and H6), 2.41-2.69 (m, 3 H , one proton of H 4 and H 6 , two protons of H 2 and H 8), 3.04$3.15(\mathrm{~m}, 2 \mathrm{H}$, two protons of H 2 and H 8$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major isomer $\delta 15.89\left(\mathrm{CH}_{3}\right), 36.53(\mathrm{C} 3, \mathrm{C} 7), 43.50(\mathrm{C} 4, \mathrm{C} 6)$, 54.53 (C2, C8), 77.79 (C5), $119.93(\mathrm{CN})$; minor isomer $\delta 13.89$, $15.75,32.36,35.22,37.62,43.06,53.83,55.33,74.23,122.53$; IR (neat): 2964, 2926 (C-H), 2219 (CN) cm ${ }^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$164.1313, found 164.1289.
5-Aminomethyl-4,6-dimethyl-1-azabicyclo[3.3.0]octane (15).
A solution of $\mathbf{1 1}(0.38 \mathrm{~g}, 2.3 \mathrm{mmol})$ in ether (3 mL) was added dropwise to a suspension of $\mathrm{LiAlH}_{4}(0.26 \mathrm{~g}, 6.8 \mathrm{mmol})$ in ether (7 mL) under reflux. The mixture was refluxed for 3 hours, quenched with water $(0.26 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.26 \mathrm{~mL})$ and water $(0.79 \mathrm{~mL})$. The white precipitate was filtered off, and the filtrate was concentrated to give a mixture of two diastereoisomers of $\mathbf{1 5}$ (0.30 g , the ratio of the isomers was 77:23) as a colorless oil. To a solution of $\mathbf{1 5}(0.30 \mathrm{~g}, 1.8 \mathrm{mmol})$ in dioxane $(0.5 \mathrm{~mL})$ and 5 N $\mathrm{NaOH}(0.54 \mathrm{~mL}, 2.7 \mathrm{mmol}), \mathrm{CbzCl}(0.40 \mathrm{~g}, 2.3 \mathrm{mmol})$ was added at 4°. The solution was stirred overnight at room temperature, and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting mixture was separated into a major isomer (0.28 g) and a minor isomer $(0.053 \mathrm{~g})$ by chromatography on alumina (n-hexane/EtOAc). Each solution of the isomers in EtOH was stirred under H_{2} with $5 \% \mathrm{Pd}-\mathrm{C}$ (20 $\mathrm{wt} \%$) overnight at room temperature, and filtered. The filtrates were concentrated to give cis-exo- $\mathbf{1 5}(0.15 \mathrm{~g}, 49 \%)$ and trans- $\mathbf{1 5}$ $(0.027 \mathrm{~g}, 8.9 \%)$ as colorless oils, respectively. cis-exo- $\mathbf{1 5}:{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.03\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \times 2\right), 1.73-2.03(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 6, \mathrm{H} 7$), 2.52 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.49-2.55 and 3.143.18 (m, 4H, H2, H8); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.40\left(\mathrm{CH}_{3}\right), 37.51$ ($\mathrm{C} 3, \mathrm{C} 7$), $43.63\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 45.13(\mathrm{C} 4, \mathrm{C} 6), 55.27(\mathrm{C} 2, \mathrm{C} 8)$, 75.14 (C5); IR (neat): $3329(\mathrm{~N}-\mathrm{H})$, 2953, $2876(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{NH}_{2}\right)^{+}$138.1283, found 138.1278. trans-15: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, exo- CH_{3}), $1.04\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, endo- $\left.\mathrm{CH}_{3}\right), 1.46-1.96(\mathrm{~m}, 4 \mathrm{H}$, H3, H7), 1.80-1.96 (m, 1H, endo-CH), 2.14-2.24 (m, 1H, exoCH), 2.50 and $2.56\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.37-2.43$,
2.56-2.60, 2.75-2.82 and 3.11-3.15 (m, 4H, H2, H8); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.68\left(\mathrm{~s}, 3 \mathrm{H}\right.$, exo $\left.-\mathrm{CH}_{3}\right), 14.05\left(\mathrm{~s}, 3 \mathrm{H}\right.$, endo $\left.-\mathrm{CH}_{3}\right)$, 32.04 and 34.19 ($\mathrm{C} 3, \mathrm{C} 7$), 37.39 and 37.82 ($\mathrm{C} 4, \mathrm{C} 6), 44.75$ $\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 54.63$ and $55.34(\mathrm{C} 2, \mathrm{C} 8), 74.55$ (C5); IR (neat): 3364 (N-H), 2957, 2875 (C-H) cm-1; HRMS (EI): calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{NH}_{2}\right)^{+}$138.1283, found 138.1294.

6-Cyano-1-azabicyclo[4.3.0]nonane (17).
By using a similar procedure as that described for $\mathbf{1 , 1 7}$ was prepared from $16(0.50 \mathrm{~g}, 1.7 \mathrm{mmol})$ and isolated after chromatography on alumina (n-hexane/EtOAc) as a colorless oil $(0.15 \mathrm{~g}, 57 \%),{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.38-1.90$ and 2.34-2.53 (m, $10 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 7, \mathrm{H} 8), 2.08-2.27$ and 2.92-3.01 (m, 4H, H2, H9); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.28$ (C8), 21.55 (C4), 24.51 (C3), 34.07 and 36.78 (C 5 and C 7), 48.01 and 51.11 (C 2 and C 9), 63.86 (C6), $118.71(\mathrm{CN})$; IR (neat): $2938(\mathrm{C}-\mathrm{H}), 2214(\mathrm{CN}) \mathrm{cm}^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right) 150.1157$, found 150.1148.

6-Cyano-1-azabicyclo[4.4.0]decane (19).
By using the same procedure as described for $\mathbf{1 7}, 19$ (34 mg , $21 \%)$ was prepared from $18(300 \mathrm{mg}, 1.0 \mathrm{mmol})$ as a colorless oil, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 1.48-1.87(\mathrm{~m}, 12 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 7, \mathrm{H} 8$, $\mathrm{H} 9), 2.33-2.40$ and $2.65-2.69(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 10) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.42(\mathrm{C} 4, \mathrm{C} 8), 25.01(\mathrm{C} 3, \mathrm{C} 9), 36.89(\mathrm{C} 5, \mathrm{C} 7)$, 52.43 (C2, C10), 64.34 (C6), 118.04 (CN); IR (neat): $2939(\mathrm{C}-\mathrm{H})$, $2215(\mathrm{CN}) \mathrm{cm}^{-1}$; HRMS (EI): calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2}\left(\mathrm{M}^{+}\right)$ 164.1313, found 164.1312 .

Acknowledgment.
The authors thank Professor Masayuki Shibuya (Tokushima University) for his helpful suggestions.

REFERENCES AND NOTES

[^0]Japan.
[1a] S. Miyano, K. Sumoto, F. Satoh, K. Shima, M. Hayashimatsu, M. Morita, K. Aisaka and T. Noguchi, J. Med. Chem., 28, 714 (1985); [b] M. Oka, Y. Matsumoto, K. Hirooka and T. Suzuki, Chem. Pharm. Bull., 48, 1121 (2000); [c] T. Suzuki, M. Oka, K. Maeda, K. Furusawa, H. Uesaka and T. Kataoka, Chem. Pharm. Bull., 47, 28 (1999).
[2] S. Miyano, O. Yamashita, K. Sumoto, K. Shima, M. Hayashimatsu and F. Satoh, J. Heterocyclic Chem., 24, 47 (1987).
[3a] S. Miyano, T. Somehara, M. Nakao and K. Sumoto, Synthesis, 701 (1978); [b] S. Miyano, S. Fujii, O. Yamashita, N. Toraishi and K. Sumoto, J. Heterocyclic Chem., 19, 1465 (1982).
[4] Y. Arata, K. Tanaka, S. Yoshifuji and S. Kanatomo, Chem. Pharm. Bull., 27, 981 (1979).
[5] Preliminary report: M. Oka, Y. Matsumoto and R. Unno, Heterocycles, 45, 1447 (1997).
[6] N. Zelinsky and G. Stadnikoff, Chem. Ber., 39, 1722 (1906).
[7] H. Hart and O. E. Curtis, Jr., J. Am. Chem. Soc., 78, 112 (1956).
[8] R. A. Jacobson, J. Am. Chem. Soc., 68, 2628 (1946).
[9] G. Böhrer and R. Knorr, Tetrahedron Lett., 25, 3675 (1984).
[10a] R. E. Ireland and D. Häbich, Chem. Ber., 114, 1418 (1981); [b] H. Stetter and H. Rauhut, Chem. Ber., 91, 2543 (1958).
[11] N. J. Leonard and A. S. Hay, J. Am. Chem. Soc., 78, 1984 (1956).
[12] M. Oka, K. Baba, T. Suzuki and Y. Matsumoto, Heterocycles, 45, 2317 (1997).
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, Jr., J. C. Burant, S, Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.9; Gaussian, Inc., Pittsburgh, PA, 1998.

[^0]: * Author for correspondence. E-mail: m_oka@mb6.skknet.com
 \dagger Present address: Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara 630-0101,

